AWR, studentship to KB, and scholarship to PWC), the Natural Sciences and Engineering Research Council of Canada (operating grants to TGB and PWC), and by a grant of computer time from the University of Calgary.

References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Back, T. G. \& Brunner, K. (1989). J. Org. Chem. 54, 1904 1910.

Back, T. G., Brunner, K., Codding, P. W. \& Roszak, A. W. (1989). Heterocycles, 28, 219-238.

Chin, C.-C. \& Warren, J. C. (1968). J. Biol. Chem. 243, 5056-5062.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321324.

Dempsey, S. (1986). MMS. The UCSD Molecular Modeling System. Version 1.3. Univ. of California, San Diego, La Jolla, USA.
Dence, J. B. (1980). Steroids and Peptides. New York: Wiley.
Duax, W. L. \& Griffin, J. F. (1985). Estrogens in the Environment, edited by J. A. McLachlan, pp. 15-24. New York: Elsevier.
Duax, W. L. \& Griffin, J. F. (1987). Receptor Mediated Antisteroid Action, edited by M. K. Agarwal, pp. 1-15. Berlin, New York: Walter de Gruyter.
Duax, W. L., Griffin, J. F., Weeks, C. M. \& Korach, K. S. (1985). Environ. Health Perspect. 61, 111-121.

Duax, W. L. \& Norton, D. A. (1975). Atlas of Steroid Structure, Vol. 1. New York: Plenum.
Griffin, J. F., Duax, W. L. \& Weeks, C. M. (1984). Atlas of Steroid Structure, Vol. 2. New York: Plenum.

Hähnel, R., Twaddle, E. \& Ratajczak, T. (1973). J. Steroid Biochem. 4, 21-31.
Hall, S. R. (1987). GENTAN, XTAL2.2 User's Manual, edited by S. R. Hall \& J. M. Stewart. Univs. of Western Australia, Australia, and Maryland, USA.
Hall, S. R. \& Stewart, J. M. (1987). Editors. XTAL2.2 User's Manual. Univs. of Western Australia, Australia, and Maryland, USA.
Hummel, W., Huml, K. \& Bürgi, H.-B. (1988). Helv. Chim. Acta, 71, 1291-1302.
Jensen, E. V., Hurst, D. J., DeSombre, E. R. \& Jungblut, P. W. (1967). Science, 158, 385-387.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Katzenellenbogen, J. A., Heiman, D. F., Carlson, K. E., Payne, D. W. \& Lloyd, J. E. (1980). Cytotoxic Estrogens in Hormone Receptive Tumors, edited by J. Raus, H. Martens \& G. Leclerce, pp. 3-38. London: Academic Press.

Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Raynaud, J. P., Ojasoo, T., Bouton, M. M. \& Philibert, D. (1979). Drug Design, Vol. VIII, edited by E. J. Ariens, pp. 169-214. New York: Academic Press.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Simons, S. S. Jr, Pons, M. \& Johnson, D. F. (1980). J. Org. Chem. 45, 3084-3088.
Smith, G. D. (1983). PROFIT. Medical Foundation of Buffalo, Buffalo, New York, USA.
Stewart, J. M. (1976). The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Structure of the Spherand* 6,12,18,24,30,36-Hexamethoxy-3,9,15,21,27,33-hexamethyl $\left[0 .{ }_{6}\right.$ Imetacyclophane, $\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{6}$, and of Three Related Spherands and Spherand Complexes: $\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{6} \cdot \mathrm{LiCl}$, $\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{6} \cdot \mathrm{NaSO}_{4} \mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ and $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~F}_{6} \cdot \mathbf{2} \mathrm{CH}_{\mathbf{2}} \mathrm{Cl}_{2}$

By Kenneth N. Trueblood, † Emily F. Maverick and Carolyn B. Knobler

James D. McCullough Laboratory for X-ray Crystallography, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90024, USA
(Received 24 May 1990; accepted 13 November 1990)

Abstract

(I): $\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{6}, M_{r}=720 \cdot 9$, rhombohedral, $R \overline{3}, a=$ $11 \cdot 697$ (3) $\AA, \alpha=114.25(2)^{\circ}, V=954$ (2) $\AA^{3}, Z=1$,

^[* Nomenclature according to Vögtle \& Neumann (1969, 1970). The three related compounds are: $6,12,18,24,30,36$-hexamethoxy-3,9,15,21,27,33-hexamethyl[0.6]metacyclophane-lithium chloride (1/1), $\quad \mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{6} . \mathrm{LiCl} ; \quad 6,12,18,24,30,36$-hexamethoxy- $3,9,15$, 21,27,33-hexamethyl $[0.6]$ metacyclophane-sodium methyl sulfatetoluene $\quad(1 / 1 / 1), \quad \mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{6} . \mathrm{NaSO}_{4} \mathrm{CH}_{3} . \mathrm{C}_{7} \mathrm{H}_{8} ; \quad 6,12,18,24,30$,-36-hexafluoro-3,9,15,21,27,33-hexamethyl[0.6]metacyclophanemethylene chloride (1/2), $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~F}_{6} .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. \dagger Author for correspondence.]

$D_{m}=1.267(5), \quad D_{x}=1.255 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=$ $1 \cdot 54184 \AA, \mu=5 \cdot 7 \mathrm{~cm}^{-1}, F(000)=384, T=295 \mathrm{~K}$, $R=0.063$ for 1200 unique reflections with $I>\sigma(I)$. (II): $\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{6} . \mathrm{LiCl}, M_{r}=763 \cdot 3$, rhombohedral, $R \overline{3}$, $a=11 \cdot 152(1) \AA, \alpha=110 \cdot 60(1)^{\circ}, V=1020 \cdot 5(5) \AA^{3}$, $Z=1, D_{m}=1.235(5), D_{x}=1.242 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{CuK} \mathrm{\alpha})$ $=1.54184 \AA, \quad \mu=11.3 \mathrm{~cm}^{-1}, \quad F(000)=404, \quad T=$ $295 \mathrm{~K}, R=0.050$ for 1150 unique reflections with I $>\sigma(I) . \quad$ (III): $\quad \mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{6} \cdot \mathrm{NaSO}_{4} \mathrm{CH}_{3} \cdot \mathrm{C}_{7} \mathrm{H}_{8}, \quad M_{r}=$ 947.1, monoclinic, $\quad P 2 / c, \quad a=11 \cdot 572(5), \quad b=$ 10.467 (5),$\quad c=22.072$ (7) $\AA, \quad \beta=108.97(3)^{\circ}, \quad V=$ $2528(4) \AA^{3}, \quad Z=2, \quad D_{m}=1 \cdot 227(5), \quad D_{x}=$
$1.244 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71069 \AA, \quad \mu=$ $1.01 \mathrm{~cm}^{-1}, F(000)=1004, T=295 \mathrm{~K}, R=0.103$ for 2903 reflections with $F>3 \sigma(F)$. (IV): $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~F}_{6} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad M_{r}=818 \cdot 6$, cubic, Pa3, $a=$ $15 \cdot 621$ (4) $\AA, \quad V=3812$ (3) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.426 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мо $K \alpha)=0.7107 \AA, \mu=3.2 \mathrm{~cm}^{-1}$, $F(000)=1680, T=295 \mathrm{~K}, R=0.097$ for 887 reflections with $F>3 \sigma(F)$. The structures of these novel hosts and host-guest complexes were determined by direct methods from diffractometer data and were refined by least squares. The methyl sulfate counterion in (III) and the solvent in (III) and in (IV) are disordered. Compound (I) is the prototype spherand, a macrocycle in which six 4-methylanisole units are joined in the 2 - and 6 -positions. The rings are tipped alternately up and down about 30° from the median plane of the molecule. The methoxy groups are in the center of the macrocycle, with their methyl groups directed alternately up and down relative to the median plane. Compound (I) is the strongest known binder of Li^{+}and Na^{+}, and binds only these two ions. Compounds (II) and (III) are the lithium chloride and sodium methyl sulfate complexes of (I); (IV) is the analog of (I) in which the six methoxy groups have been replaced by F atoms. The uncomplexed hosts of (I) and (IV) and the host moieties in (II) and (III) are very similar structurally and have little conformational flexibility; there is essentially no reorganization of (I) upon complexation, quite in contrast to typical crown ethers and cryptands. The O atoms in the center of the molecule are arranged octahedrally; the cavity defined by them has a diameter between about 1.4 and $1.8 \AA$, scarcely large enough for a sodium ion. The aromatic rings and their attached atoms in these four molecules are deformed significantly from coplanarity, in a fashion consistent with the intramolecular overcrowding. (IV) is the flattest of these molecules, because the F atoms in the central cavity are effectively smaller than oxygen and have no attached methyl groups. The overall librational motion of the host molecules is small in each of these room-temperature structures. Although there is evidence of significant wagging of the methyl groups, and torsional motion about the $\mathrm{C}_{\text {arom }}-\mathrm{O}$ bonds in (I), (II) and (III), the skeleton of linked aromatic rings in each of these four molecules is quite rigid, uncommonly so for such large molecules.

Introduction

Spherands are synthetic hosts designed to undergo at most minimal conformational reorganization upon complexation (Cram, Kaneda, Helgeson \& Lein, 1979; Cram, Kaneda, Helgeson, Brown, Knobler, Maverick \& Trueblood, 1985). A structural formula is given (see scheme below) for the host (I) and the
host of (IV); (II) and (III) are the Li^{+}and Na^{+} complexes of (I). Systematic names are extremely complex, so we have used instead the nomenclature suggested by Vögtle \& Neumann (1969, 1970). The present structural studies establish that indeed for the prototype spherand (I), a cyclic hexamer of a 2,6-disubstituted 4 -methylanisole unit, there is essentially no reorganization upon complexation.

(I)

Host of (IV)

Some of the present results have been reported in preliminary form (Trueblood, Knobler, Maverick, Helgeson, Brown \& Cram, 1981; Cram \& Trueblood, 1981; Cram, Brown, Taguchi, Feigel, Maverick \& Trueblood, 1984; Cram et al., 1985).

Experimental

Most of the relevant experimental information is summarized in the Abstract or in Table 1. All crystals were grown by slow evaporation from the indicated solvents.*

[^1]Table 1. Crystal, data-collection and refinement information
All measured densities (see $A b s t r a c t$) were determined by flotation; all diffractometer measurements were made on a Syntex $P \overline{1}$ with graphite-monochromatized radiation, $\mathrm{Cu} K \alpha$ for (I) and (II), and Mo $K \alpha$ for (III) and (IV); all lattice parameters were determined by least-squares fit of 15 centered reflections in the indicated ranges of 2θ; the maximum average deviation of a standard reflection during data collection for any structure was less than 2%, and for most it was well under 1%.

Solvent ${ }^{6}$
Crystal dimensions (mm)
2θ range (${ }^{\circ}$) (for lattice parameters)
\quad (I)
MC-T
$0.15 \times 0.33 \times 0.42$
$74-84$
0.634
0 to 13
-14 to 11
-12 to 11
2.0
Yes
None
1810
1295
2
95
1200
96
0.063
0.086
3.05
0.30
-0.22
\quad (II)
MC-T
$0.10 \times 0.10 \times 0.50$
$75-100$
0.634
-13 to 13
-13 to 11
-12 to 14
2.0
Yes
None
1813
1238
2
88
1150
100
0.050
0.073
2.46
0.26
-0.28

(III)	(IV)
MC-T	THF-MC
$0.30 \times 0.19 \times 0.50$	$0.35 \times 0.40 \times 0.50$
$22-26$	$30-36$
0.595	0.595
0 to 13	0018
0 to 12	0 to 18
-24 to 24	0 to 18
2.0	12.0
Yes	No
$h 01, l=2 n+1$	$0 k l, k=2 n+1$
5340	3808
4500	1135
3	3
1597	248
2903	887
302	94
0.103	0.097
0.117	0.074
3.21	2.36
0.78^{b}	0.46
-0.57	-0.47

Notes: (a) MC, methylene chloride; T, toluene; THF, tetrahydrofuran. (b) The peaks for (III) were in the region of the counterion, indicating deficiencies in the model for the disorder. We used a scattering curve for Na^{+}, with neutral scattering factors for all other atoms, so one electron was unaccounted for in the model for (III).

Difference maps were used to locate initially all H atoms of each structure, except for some of those on the solvent molecules of (III) and (IV), which were partially disordered.

The structures of (I), (II) and (III) were solved with multan (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978); (IV) was solved with SHELX76 (Sheldrick, 1976). Some initial refinement was carried out with local programs, but all final refinements were with SHELX76. In the final refinements, all H atoms were restrained to be about $1.08 \AA$ from the attached C, and methyl groups were refined as rigid groups ($\mathrm{H}-\mathrm{C}-\mathrm{H}$ angles fixed at 109.5°; no restraints on $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles). The isotropic $\left\langle u^{2}\right\rangle$ values for the H atoms of (I), (II) and (in part) (IV) were allowed to refine; those for (III) and (in part) (IV) were fixed at the values shown in Tables 2(c) and 2(d). The identification and location of the counterion in (III), $\mathrm{CH}_{3} \mathrm{OSO}_{3}^{-}$, and the toluene solvent in the same structure, were difficult. Since the Na^{+}ion lies at a center of symmetry, there are only two Na^{+}and thus only two counterions in the unit cell. Similarly, both density information and consideration of space available indicate that only two toluene molecules are present in the cell. Neither the counterion nor the solvent can have a center of symmetry; the counterion cannot have a twofold axis. Consequently, the solvent and counterion must either be disordered or not follow the full symmetry of the space group.

The space-group absences (Table 1) were quite unequivocal for the presence of the c glide. We
therefore considered the possibility that the space group might be $P c$ instead of $P 2 / c$, which has the same Laue group, although intensity statistics supported $P 2 / c$. (Indeed, the counterion and solvent positions were developed from initial coordinates found in difference maps in Pc.) It seemed plausible that the toluene and the methyl sulfate ion might obey only the symmetry operations of $P c$, with the centrosymmetric spherand and Na^{+}dominating the intensity statistics. When a model with that assumption was tried, peaks of $0.5-0.8 \mathrm{e} \AA^{-3}$ remained, and no great advantage in the refinement was observed. We finally settled on a model in $P 2 / c$ in which the counterion is disordered about a twofold axis of the structure, and the toluene disordered about a center of symmetry, each having occupancy $0 \cdot 5$. The toluene was refined as a rigid group, and the methyl sulfate positions were restrained to have nearly the same distances and angles as similar species in the literature [for example: 3-methylcytidine methyl sulfate monohydrate; Shefter, Singh, Brennan \& Sackman (1974)]. There were, however, some undesirably close contacts between counterion and solvent moieties. We used packing-energy calculations with Gavezzotti's (1983) program OPEC to study these interactions. If only a single counterion position is chosen, the two possible solvent positions differ by about $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in intermolecular energy. A rotation of the methyl group in the counterion by about 25° around the attached O-S bond eliminates most short intermolecular contacts (shortest $\mathrm{C} \cdots \mathrm{H}$ distances remaining are $\mathrm{C} 33 \cdots \mathrm{H} 22 A$,

Table 2. Positional and displacement parameters
Displacement parameters are commonly called vibration or thermal parameters. Units of $\left\langle u^{2}\right\rangle$ are \AA^{2}. Units of each e.s.d., in parentheses, are those of the least significant digit of the corresponding parameter.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{(a) Prototype spherand, $\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{6}$ (I)}} \& \multirow[t]{2}{*}{z} \& \multirow[t]{2}{*}{$\left\langle u^{2}\right\rangle$} \& \& x \& y \& z \& \multirow[t]{2}{*}{$$
\left\langle u^{2}\right\rangle
$$}

\hline \& \& \& \& \& O26 \& -0.1839 (3) \& 0.0743 (4) \& 0.5015 (2) \&

\hline Cl \& 0.2782 (3) \& 0.4976 (3) \& 0.6611 (3) \& 0.044 \& C27 \& -0.2211 (8) \& 0.1556 (8) \& 0.5428 (4) \& 0.101

\hline C2 \& 0.1474 (3) \& $0 \cdot 3968$ (3) \& 0.6481 (3) \& 0.045 \& S28 ${ }^{\prime \prime}$ \& 0.0289 (9) \& $0 \cdot 6662$ (7) \& 0.2719 (4) \& 0.197

\hline C3 \& 0.1385 (3) \& $0 \cdot 2881$ (3) \& 0.6746 (3) \& 0.045 \& O30" \& -0.0146 (14) \& 0.6625 (11) \& 0.3259 (6) \& 0.183

\hline C4 \& 0.0049 (3) \& 0.1901 (3) \& 0.6740 (3) \& 0.056 \& O31" \& $0 \cdot 1030$ (15) \& 0.7775 (13) \& 0.2714 (7) \& 0.282

\hline C5 \& 0.2575 (3) \& 0.2733 (3) \& 0.7018 (3) \& 0.046 \& O29" \& -0.089 (1) \& 0.686 (2) \& 0.212 (1) \& 0.26 (2)

\hline C6 \& 0.3885 (3) \& 0.3698 (3) \& 0.7122 (3) \& 0.045 \& O32" \& 0.081 (2) \& 0.548 (1) \& $0 \cdot 260$ (1) \& 0.28 (1)'

\hline C7 \& $0 \cdot 4042$ (3) \& $0 \cdot 4903$ (3) \& 0.7036 (3) \& 0.047 \& C33" \& -0.194 (1) \& 0.609 (2) \& $0 \cdot 208$ (1) \& 0.18 (1)

\hline O8 \& 0.5445 (2) \& $0 \cdot 6052$ (2) \& 0.7361 (3) \& 0.061 \& C34" \& 0.424 (1) \& 0.508 (2) \& 0.478 (1) \& 0.17 (1) ${ }^{2}$

\hline C9 \& 0.7115 (4) \& 0.7250 (4) \& 0.9088 (4) \& 0.079 \& C35 \& 0.519 \& 0.493 \& 0.453 \& 0.11 (1)

\hline H2 ${ }^{1 \times}$ \& 0.050 \& 0.403 \& 0.617 \& 0.04 (1) ${ }^{1}$ \& C36 \& 0.639 \& $0 \cdot 480$ \& 0.493 \& $0 \cdot 10$ (1) ${ }^{\text {a }}$

\hline H4A \& -0.086 \& $0 \cdot 202$ \& 0.629 \& 0.14 (2) \& C37 \& 0.664 \& 0.481 \& 0.560 \& $0 \cdot 22$ (2)

\hline H4B \& 0.084 \& 0.264 \& 0.811 \& 0.19 (2) \& C38 \& 0.569 \& 0.496 \& 0.585 \& 0.14 (1)'

\hline H4C \& -0.066 \& 0.054 \& 0.601 \& 0.18 (2) \& C39 \& 0.449 \& 0.510 \& 0.544 \& 0.23 (2)

\hline H5 \& 0.248 \& 0.184 \& 0.715 \& 0.06 (1) \& C40 \& 0.297 \& 0.525 \& 0.435 \& 0.36 (3)'

\hline H9 A \& 0.811 \& 0.832 \& 0.938 \& 0.14 (2) \& H2" \& 0.409 \& 0.137 \& 0.424 \& $0.07{ }^{\circ}$

\hline H9 ${ }^{\text {B }}$ \& 0.739 \& 0.646 \& 0.904 \& $0 \cdot 18$ (2) \& H4A \& 0.406 \& 0.207 \& 0.321 \& $0 \cdot 10$

\hline \multirow[t]{2}{*}{H9C} \& \multirow[t]{2}{*}{0.711} \& 0.776 \& \multirow[t]{2}{*}{1.010} \& \multirow[t]{2}{*}{0.27 (3)'} \& H4B \& 0.296 \& 0.328 \& $0 \cdot 290$ \& 0.10

\hline \& \& \& \& \& H4C \& 0.265 \& $0 \cdot 170$ \& 0.263 \& $0 \cdot 10$

\hline \multicolumn{5}{|l|}{(b) LiCl complex of the prototype spherand, $\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{6} \cdot \mathrm{LiCl}$ (II)} \& H5

H9A \& 0.076
0.054 \& 0.282
0.298 \& 0.295
0.569 \& 0.07
0.10

\hline Cl \& $0 \cdot 0000$ \& 0.0000 \& 0.0000 \& 0.056 \& H9A
H 98 \& 0.054
0.044 \& 0.298
0.391 \& 0.569
0.501 \& 0.10
0.10

\hline Li \& 0.5000 \& $0 \cdot 5000$ \& 0.5000 \& 0.034 \& H98
H 9 \& 0.187 \& 0.391
0.330 \& 0.501
0.549 \& 0.10
0.10

\hline C1 \& 0.7153 (2) \& 0.4151 (2) \& 0.3227 (2) \& 0.032 \& H 11 \& 0.187
-0.067 \& ${ }_{0} 0.457$ \& 0.348 \& 0.07

\hline C2 \& 0.7169 (3) \& 0.2995 (2) \& $0 \cdot 2220$ (2) \& 0.037 \& H13

H \& -0.067
-0.401 \& 0.516 \& 0.348
0.316 \& 0.10

\hline C3 \& 0.7118 (3) \& 0.1799 (3) \& 0.2392 (3) \& 0.038 \& H13A
H 13 \& -0.295 \& 0.538 \& 0.274
0.274 \& 0.10

\hline C4 \& 0.7104 (4) \& 0.0543 (3) \& 0.1258 (3) \& 0.055 \& H13C \& -0.264 \& 0.598 \& 0.353 \& 0.10

\hline C5 \& 0.7010 (3) \& 0.1764 (2) \& 0.3589 (3) \& 0.038 \& H14 \& -0.405 \& 0.306 \& 0.353 \& 0.07

\hline C6 \& 0.6990 (2) \& 0.2903 (2) \& 0.4619 (2) \& 0.031 \& H18A \& -0.051 \& -0.128 \& 0.349 \& 0.10

\hline C7 \& 0.7110 (2) \& 0.4112 (2) \& 0.4448 (2) \& 0.029 \& HI8B \& -0.056 \& 0.018 \& 0.308 \& 0.10

\hline O8 \& 0.7154 (2) \& 0.5289 (2) \& 0.5499 (3) \& 0.032 \& H18C \& -0.192 \& -0.050 \& 0.313 \& $0 \cdot 10$

\hline C9 \& 0.8684 (3) \& 0.6544 (3) \& 0.6681 (3) \& 0.062 \& $\mathrm{H}_{2} 0$ \& -0.459 \& 0.044 \& 0.303 \& 0.07

\hline H2 ${ }^{10}$ \& 0.724 \& 0.303 \& 0.129 \& 0.05 (1)' \& H22A \& -0.622 \& -0.248 \& 0.335 \& $0 \cdot 10$

\hline H4A \& 0.688 \& -0.040 \& 0.141 \& 0.15 (2)' \& H22B \& -0.577 \& -0.181 \& 0.273 \& $0 \cdot 10$

\hline H4B \& 0.821 \& 0.103 \& 0.140 \& 0.15 (2)' \& H22C \& -0.655 \& -0.087 \& 0.314 \& 0.10

\hline $\mathrm{H}^{\text {H }} \mathrm{C}$ \& 0.624 \& 0.014 \& 0.012 \& 0.18 (2)' \& H23 \& -0.468 \& -0.238 \& 0.440 \& 0.07

\hline H5 \& 0.695 \& 0.084 \& 0.372
0.746 \& 0.06 (1)' \& H27A \& -0.150 \& 0.207 \& 0.578 \& 0.10

\hline H9A \& 0.863 \& 0.741 \& 0.746 \& 0.08 (1) ${ }^{\text {a }}$ \& H27 B \& -0.274 \& $0 \cdot 101$ \& 0.566 \& 0.10

\hline H9B \& ${ }_{0}^{0.928}$ \& 0.702
0.616 \& 0.622
0.728 \& 0.21 (2)' \& H27C \& -0.280 \& 0.222 \& 0.510 \& 0.10

\hline H9C \& 0.928 \& 0.616 \& 0.728 \& 0.21 (3)' \& H33A \& -0.267 \& 0.631 \& 0.165 \& 0.20

\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{(c) $\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{O}_{6} \cdot \mathrm{NaCH}_{3} \mathrm{SO}_{4} \cdot \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ (III)}} \& H33B \& -0.222 \& 0.628 \& 0.249 \& 0.20

\hline \& \& \& \& \& H33C \& -0.170 \& 0.509 \& 0.208 \& $0 \cdot 20$

\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{S28-C $33, \mathrm{H} 33 A-\mathrm{H} 33 \mathrm{C}$ and $\mathrm{H} 40 A-\mathrm{H} 40 \mathrm{C}$ are in positions adjusted to give reasonable packing energy; see text.}} \& H35 \& 0.500 \& 0.492 \& 0.401 \& $0 \cdot 20$

\hline \& \& \& \& \& H36 \& 0.712 \& 0.468 \& 0.474 \& $0 \cdot 20$

\hline Na \& 0.0000 \& 0.0000 \& 0.5000 \& 0.048 \& H37 \& 0.757 \& 0.471 \& 0.591 \& 0.20

\hline Cl \& 0.2623 (5) \& $0 \cdot 1594$ (6) \& 0.4631 (3) \& 0.055 \& H38 \& 0.589 \& 0.497 \& 0.636 \& $0 \cdot 20$

\hline C2 \& 0.3159 (5) \& $0 \cdot 1680$ (6) \& 0.4149 (3) \& 0.059 \& H39 \& 0.376 \& 0.521 \& 0.564 \& 0.20

\hline C3 \& $0 \cdot 2506$ (6) \& 0.2164 (7) \& 0.3559 (3) \& 0.064 \& H40A \& 0.286 \& 0.620 \& 0.415 \& 0.31

\hline C4 \& $0 \cdot 3092$ (6) \& 0.2290 (9) \& $0 \cdot 3037$ (3) \& 0.093 \& H 40 B \& 0.278 \& 0.456 \& 0.397 \& 0.31

\hline C5 \& $0 \cdot 1280$ (6) \& $0 \cdot 2486$ (7) \& $0 \cdot 3426$ (3) \& 0.064 \& H40C \& 0.235 \& 0.512 \& 0.462 \& 0.31

\hline C6 \& 0.0715 (5) \& 0.2391 (6) \& $0 \cdot 3890$ (3) \& 0.055 \& \multicolumn{3}{|l|}{\multirow[b]{2}{*}{(d) $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~F}_{6} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (IV)}} \& \&

\hline C7 \& 0.1409 (6) \& $0 \cdot 1986$ (6) \& 0.4491 (3) \& 0.052 \& \& \& \& \&

\hline O8 \& 0.0887 (4) \& $0 \cdot 1930$ (4) \& $0 \cdot 4979$ (2) \& 0.056 \& C1 \& $0 \cdot 2989$ (3) \& 0.1163 (3) \& 0.4295 (3) \& 0.037

\hline C9 \& 0.0898 (9) \& 0.3113 (8) \& 0.5299 (4) \& 0.100 \& C2 \& 0.2189 (3) \& 0.1498 (3) \& 0.4486 (3) \& 0.040

\hline C10 \& -0.0639 (6) \& 0.2617 (7) \& 0.3742 (3) \& 0.054 \& C3 \& $0 \cdot 2056$ (3) \& 0.2028 (3) \& 0.5195 (3) \& 0.040

\hline C 11 \& -0.1205 (6) \& 0.3777 (6) \& 0.3552 (3) \& 0.059 \& C4 \& 0.1187 (3) \& 0.2424 (3) \& 0.5357 (3) \& 0.056

\hline C12 \& -0.2438 (6) \& 0.3949 (6) \& 0.3455 (3) \& 0.057 \& C5 \& 0.2735 (3) \& 0.2169 (3) \& 0.5751 (3) \& 0.039

\hline C13 \& -0.3053 (7) \& 0.5212 (7) \& $0 \cdot 3206$ (4) \& 0.080 \& C6 \& $0 \cdot 3557$ (3) \& $0 \cdot 1850$ (2) \& 0.5585 (3) \& 0.036

\hline C14 \& -0.3103 (6) \& 0.2923 (7) \& $0 \cdot 3580$ (3) \& 0.054 \& C7 \& 0.3662 (3) \& 0.1394 (3) \& 0.4841 (3) \& 0.039

\hline C15 \& -0.2580 (5) \& 0.1744 (7) \& 0.3772 (3) \& 0.052 \& F8 \& 0.4468 (1) \& $0 \cdot 1163$ (2) \& 0.4605 (1) \& 0.047

\hline C16 \& -0.1358 (5) \& 0.1589 (6) \& $0 \cdot 3812$ (3) \& 0.046 \& Cl1" \& $0 \cdot 4348$ (2) \& 0.4348 (2) \& 0.4348 (2) \& 0.191

\hline 017 \& -0.0841 (3) \& 0.0376 (4) \& 0.3945 (2) \& 0.053 \& C12" \& $0 \cdot 3580$ (6) \& 0.3100 (16) \& 0.3244 (21) \& 0.166

\hline C18 \& -0.0957 (7) \& -0.0361 (8) \& 0.3380 (3) \& 0.089 \& C9 ${ }^{\text {" }}$ \& 0.337 (1) \& 0.388 (1) \& 0.404 (1) \& 0.11 (1)'

\hline C19 \& -0.3236 (5) \& 0.0645 (6) \& 0.3945 (3) \& 0.045 \& H2" \& 0.165 \& 0.135 \& 0.408 \& 0.05

\hline C20 \& -0.4230 (6) \& 0.0060 (7) \& $0 \cdot 3509$ (3) \& 0.062 \& H41 \& 0.113 \& 0.290 \& 0.585 \& 0.10

\hline C21 \& -0.4778 (6) \& -0.1005 (7) \& 0.3674 (3) \& 0.067 \& H42 \& 0.084 \& 0.185 \& 0.554 \& 0.10

\hline C22 \& -0.5891 (7) \& -0.1625 (9) \& 0.3187 (3) \& 0.105 \& H43 \& 0.092 \& 0.267 \& 0.477 \& 0.10

\hline C23 \& -0.4275 (6) \& -0.1534 (7) \& 0.4278 (3) \& 0.066 \& H5 \& 0.263 \& 0.253 \& 0.633 \& 0.04

\hline C24 \& -0.3264 (5) \& -0.0986 (6) \& 0.4726 (3) \& 0.050 \& H91 \& 0.306 \& 0.359 \& 0.459 \& $0 \cdot 10$

\hline C25 \& -0.2805 (5) \& 0.0137 (6) \& 0.4557 (3) \& 0.051 \& H92 \& $0 \cdot 295$ \& 0.436 \& $0 \cdot 377$ \& 0.10

\hline
\end{tabular}

Notes: (i) Atom refined isotropically. Other isotropic values are [$\left.1 /\left(8 \pi^{2}\right)\right]$ times the 'equivalent B value' for an anisotropic atom, as defined by Hamilton (1959). (ii) Distances and angles restrained. (iii) Pivot atom in rigid group; other atoms in group (toluene) follow. (iv) H atoms were refined as parts of rigid groups or riding on the attached aromatic C atom. (v) For $\mathrm{H},\left\langle u^{2}\right\rangle$ was not refined.
in the host, $2 \cdot 5 \AA$, and $\mathrm{C} 33 \cdots \mathrm{H} 37$, in toluene, $2 \cdot 6 \AA$). Thus we believe that the model is reasonable but that the distribution of solvent and counterion in the
crystal is not random. The nominal e.s.d.'s of the atomic positions in the counterion and the solvent (Table 2c) should not be taken as a measure of the
uncertainty in these positions; on the other hand, we are confident that those of the host in (III) are meaningful.

Similarly, although the host in (IV) refined well, the solvent in the structure was difficult to model. The crystal was grown from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)$. Two peaks of distinctly different magnitude appeared along the threefold axis in early difference maps. The observed density agreed with the presence of a disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule rather than with THF, and our final model has such a disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, with one $\mathrm{Cl}(\mathrm{Cll}$ in Table 2d) along an extension of the threefold axis of the host molecule. The C atom (C9 in Table 2d), the other Cl (Cl 2 in Table $2 d$), and the two H atoms of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule have occupancy $\frac{1}{3}$, corresponding to the overall stoichiometry of one host for every two $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules. The packing-energy program $O P E C$ was used with this structure as well, to confirm that the position for the solvent was reasonable and to choose between the present model and one in which both Cl atoms lie on the threefold axis.

All calculations were carried out on an IBM 3090, DEC VAX 11/750, 11/780 or 3100 computers, with the UCLA Crystallographic Package (1984), which includes locally edited versions of CARESS, PROFILE and ORTEP (Johnson, 1965), and with PLUTO78 (Motherwell \& Clegg, 1978), a local molecular-geometry program, and THMA11 (Trueblood, 1978; Dunitz, Schomaker \& Trueblood, 1988). Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV) and Cromer \& Mann (1968).

The final positional parameters and isotropic temperature factors (equivalent values for atoms refined anisotropically) are given in Tables 2(a-d).*

Results and discussion

Most of the interatomic distances, bond angles and torsion angles in these molecules (included in the supplementary material) fall within the normal ranges. \dagger Some features of the geometries of the different molecules are compared in Table 3. The numbering scheme is shown in Fig. 1. The consider-

[^2]able strain in the spherand hosts is manifested especially in the distortions from coplanarity of the individual aromatic rings and their immediately attached atoms, and the folding of these rings about the $\mathrm{CH}_{3}-\mathrm{C}_{\mathrm{Ar}} \cdots \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}$ (or -F) axis. That this strain is chiefly a consequence of the crowding of the OCH_{3} groups or F atoms in the central cavity becomes apparent on comparison with hexametaphenylene (HMP) (Irngartinger, Leiserowitz \& Schmidt, 1970), where the distortion is minimal. What little there is results principally from the fact that the rings are tipped alternately up and down about 19°, to minimize $\mathrm{H} \cdots \mathrm{H}$ contacts in the central cavity. This is a smaller cant than in any of the present molecules. Some data for HMP are included in Table 3 for convenience, and a comparison of van der Waals models of HMP and the most non-planar of the spherand hosts [that in (III)] is shown in Fig. 2.

If molecular distortion is measured by the folding of the aromatic rings, the r.m.s. deviations of the ring atoms from their best plane, or the deviation of the O (or F) atoms from that plane, the most distorted of the present molecules are the two uncomplexed hosts, (I) and (IV). It is not surprising that the highly electronegative O and F atoms should repel one another strongly when forced together as they are in these molecules; in (II) and (III), the strong attractive fields of the Li^{+}and Na^{+}ions offset much of this repulsion, reducing the strain. It is interesting that (IV) shows absolutely no complexing ability for Li^{+}and Na^{+}, despite the fact that the electron pairs of the highly electronegative F atoms should be ideally disposed for such complexing (Cram et al., 1984). The F…F distance across the cavity in the center of (IV) is $4.18 \AA$; with a van der

Fig. 1. Numbering scheme for the present hosts, illustrated for the asymmetric unit of the host of (I) and (II). It is similar for (IV), in which O8 and C9 have been replaced by F8. In (III), the asymmetric unit is half a molecule; the numbering for chemically equivalent atoms continues in adjacent rings, by adding 9 or 18 to the numbers shown here.

Table 3. Comparison of some features of the molecular geometry of (I)-(IV) and of a related molecule
HMP is hexametaphenylene, $\mathrm{C}_{36} \mathrm{H}_{24}$ (Irngartinger et al., 1970), the hydrocarbon consisting of six $\mathrm{C}_{6} \mathrm{H}_{4}$ rings linked in the meta positions. It is thus the unsubstituted skeleton of the four spherand hosts studied here. Average values are given for (III) and HMP, for which the asymmetric unit consists of a half molecule. For (I), (II) and (IV), the asymmetric unit is one sixth of the molecule. R.m.s. deviations of individual values are given in square brackets when averages were taken, in units of the least significant digit.

Interplanar angle $\left({ }^{\circ}\right)$ between adjacent rings ${ }^{\circ}$ Angle $\left({ }^{\circ}\right)$ between aromatic ring planes and median molecular plane ${ }^{\circ}$ Fold angle (${ }^{\circ}$) of aromatic rings about $\mathrm{C} 3-\mathrm{C} 7$ axis
R.m.s. deviation (\AA) of aromatic ring atoms from their best plane ${ }^{c}$ Deviation (\AA) of O (or F) from aromatic ring plane Deviation (\AA) of attached aromatic C's from ring plane ${ }^{d}$ Bond angle (${ }^{\circ}$), $\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}-\mathrm{CH}_{3}$
Torsion angle (${ }^{\circ}$), $\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}-\mathrm{CH}_{3}$ Shortest intramolecular $\mathrm{O} \cdots \mathrm{O}$ distance (\AA)
Longest intramolecular $\mathrm{O} \cdots \mathrm{O}$ distance (\AA) Cation \cdots O distance (\AA)
Intramolecular interplanare distances (\AA)
Planes of O atoms (d in Fig. 5)
Planes of CH_{3} (D in Fig. 5)

(I)	(II)
52	56
30	33
6.2	2.9
0.032	0.014
0.21	0.06
$0.17[6]$	$0.13[0]$
115	112
62	86
2.92	2.79
4.43	4.28
-	2.14
2.20	2.06
4.83	4.84

(III)
$60[1]$
$35[2]$
$4.6[8]$
0.024
$0.11[4]$
$0.16[2]$
$114[1]$
$88[4]$
2.99
4.53
$2.27[1]$
$2.24[14]$
4.98

(IV)	HMP
44	$33[4]$
26	$19[5]$
5.6	$0.7[9]$
0.028	0.006
0.21	-
$0.07[3]$	$0.05[4]$
-	-
-	-
-	-
-	-
-	$0.91[4]^{r}$
1.85	-
-	

Notes: (a) The angle between the normals to the least-squares planes of adjacent aromatic rings. (b) This is the angle between the normal to the least-squares plane of the aromatic ring and the molecular axis, defined as the normal to the plane of the six O (or six F) atoms. (c) The e.s.d.'s of the atomic distances from the planes vary from $0.002-0.003 \AA$ in HMP, (I) and (II) to $0.005-0.006 \AA$ in (III), so these deviations are (highly) significant in all but HMP. (d) The attached C atoms of adjacent rings always lie on the opposite side of the plane from the OCH_{3} group or F atom, reflecting the fact that the folding of the rings is due primarily to crowding in what would be the central cavity of an unsubstituted molecule. (e) See Fig. 5. CH_{3} here refers to the methoxymethyl groups. Distance between planes of F in (IV) and of H in HMP.

Waals radius* of about $1.35 \AA$ for F , this leaves $(4.18-2 \cdot 70)=1.48 \AA$, so there would seem to be just enough room for an Li^{+}ion, with an ionic radius \dagger of about $0.76 \AA$.

Because of the crowding at the center of the hosts in (I), (II) and (III), the methoxy groups are twisted far out of the plane of the attached rings. Normally, even in o-dimethoxybenzenes, the carbon of the methoxymethyl is coplanar with the ring, or close to this conformation (Di Rienzo et al., 1976; Anderson, Kollman, Domelsmith \& Houk, 1979; Caillet, 1982), and in an acyclic compound related to these spherands, where there is no overcrowding, we found (Trueblood \& Maverick, 1986) essentially coplanar conformations. The crowding also results in a small but significant decrease in the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ bond angle from that usual in anisole derivatives (about 118°).

The differences between the arrangements of the O atoms and their attached methyls in the spherand host in (I), (II) and (III) are small but noteworthy. The O atoms are arrayed with $\overline{3}$ symmetry in (I) and (II), and close to $\overline{3}$ symmetry in (III), around the center of the molecule, which is empty in (I) and

[^3]occupied by a cation in (II) and in (III). As indicated in Table 3, the closest $\mathrm{O} \cdots \mathrm{O}$ distance shortens by $0.13 \AA$ when the small Li^{+}, with its strong field, enters the cavity; the $\mathrm{Li}^{+}-\mathrm{O}$ distance is $2 \cdot 138$ (2) \AA, quite in accord with usual $\mathrm{Li}^{+}-\mathrm{O}$ distances. The distance between the centrosymmetrically related O atoms on opposite sides of the cavity also becomes shorter, by $0.15 \AA . \mathrm{Li}^{+}$is small enough to fit in the original cavity, and its field contracts that cavity. On the other hand, Na^{+}, with a radius for sixfold

Fig. 2. Comparison of van der Waals models of hexametaphenylene (HMP) (left), and of the prototype spherand complexed with Na^{+}in (III) (right), where the tilt of the rings is almost twice as great as in HMP (Table 3). The lower view of each is along the molecular axis, the upper one at 90 to that. The much greater thickness of the spherand is due both to the tilt of the rings and to the presence of the methyl groups in the para positions and in the methoxy groups. The sodium ion in (III) can be seen in the center of the cavity of the host. Because of the inflexibility of this spherand host, this view of (III) looks essentially identical to the similar views of (II) and of (I) (except for the presence of the ion) that have been shown earlier (e.g., Trueblood, 1984).

Table 4. Some results of analysis of the anisotropic displacement parameters
All calculations were made with our program THMA11 (Trueblood, 1978; Dunitz et al., 1988). Numbers in parentheses represent e.s.d.'s, given in units of the least significant digit of the corresponding quantity.

	(I)	(II)	(III)	(IV)
(1) R.m.s. libration amplitude (${ }^{\circ}$) of CH_{3} about the $\mathrm{C}_{\mathrm{A}}-\mathrm{O}$ bond	10.5 (10)	10.9 (4)	13.5 (14)	-
			12.2 (14)	
			13.0 (15) 0.0048	
(2) Mean MSDA $\left(\AA^{2}\right)$ difference between bonded atoms along bond direction*	0.0009	$0 \cdot 0008$	0.0048	0.0022
(3) Mean e.s.d. of $U^{\prime \prime}\left(\AA^{2}\right)$	0.0013	0.0012	0.0037	0.0023

* See discussion in text. Detailed tables of MSDA differences for each structure are included with the supplementary material.
coordination of $1.02 \AA$ (Shannon, 1976), is too large for the original cavity and expands it somewhat, although not as much as it would a cavity lined with O atoms that were conformationally more mobile. The 'effective radius' of Na^{+}in this cavity is only about* $0.87 \AA$, and the $\mathrm{Na}^{+}-\mathrm{O}$ distances, about $2 \cdot 27 \AA$ (Table 3), are thus distinctly smaller than the usual range near $2 \cdot 40 \AA$.

The overall librational motion of the host molecules, estimated from the anisotropic atomic displacement parameters (ADPs, 'thermal' parameters) with our program THMA11, is very small in each of these room-temperature structures: the maximum r.m.s. librational amplitudes are less than 1° in the uncomplexed hosts (I) and (IV), and only $2 \cdot 1^{\circ}$ in (II) and $2 \cdot 8^{\circ}$ in (III). On the other hand, there is evidence of significant torsional oscillation (libration) of the methyl groups about the $\mathrm{C}_{\text {arom }}-\mathrm{O}$ bonds in the three hosts containing OCH_{3} groups (Table 4), the r.m.s. librational amplitudes being uniformly in the range $10-13^{\circ}$. Because the overall librational motion is so small, the corrections to most bond distances for such motion are negligible, only a fraction of the e.s.d. of the distance. On the other hand, corrections to the $\mathrm{O}-\mathrm{CH}_{3}$ distances are appreciable, being an order of magnitude larger (0.020 to $0.033 \AA$). These distances have been corrected in the tables in the supplementary material.

For bonds of the kinds present in these molecules, the difference in mean-square displacement amplitudes (MSDAs) of the bonded atoms along the bond direction should be of the order of $0.0010 \AA^{2}$ or less (Hirshfeld, 1976) if the data are of good quality. The quality of the ADPs, as estimated from the mean e.s.d. of the $U^{i j}$, is good for (I) and (II), mediocre for (IV), and poor for (III) (Table 4). The data for (I) and (II) meet the Hirshfeld criterion well (Table 4), and although those for (III) and (IV) do not appear

[^4]to, they fit about as well as might be expected, given the mean e.s.d. of $U^{i j}$.

In addition to not undergoing any appreciable overall librational motion in the crystals, these hosts, except for the internal torsion about the $\mathrm{O}-\mathrm{CH}_{3}$ bond in (I), (II) and (III), and a little wagging of the para-methyl groups in all four structures, are exceptionally rigid. Indeed, they are the most rigid molecules of their size we have ever encountered. Normally, there is significant relative motion of linked aromatic or aliphatic rings, easily detectable by a generalization of the Hirshfeld bond test (Rosenfield, Trueblood \& Dunitz, 1978). These molecules were designed to be conformationally inflexible, as mentioned in the Introduction. All the chemical and structural evidence indicates that this objective was achieved, and it is gratifying that the evidence from ADP analysis provides independent confirmation.

Conformational flexibility is normally important in facilitating molecular packing in crystals, particularly for molecules of size comparable to those studied here. The unusual rigidity of these hosts doubtless plays a major role in the fact that they are often hard to crystallize, and that the crystals that do form frequently contain disordered solvent and/or disordered counterions. The form of (I) reported here has no significant intermolecular cavities. The rhombohedral unit cell contains a single molecule, with its axis along [111]; the host is essentially that depicted for (III) in Fig. 2 (without the cation).

Fig. 3 is a packing drawing of the structure of (I), viewed almost along the molecular axis, and Fig. 4 is a similar view of the structure of (II). In crystals of both (I) and (II), the hosts pack in stacks along [111], which is the c axis of the related hexagonal cell. The length of this axis is the distance between the centers of host molecules or complexes in these crystals; it is $8 \cdot 56 \AA$ in (I) and almost $2 \AA$ larger in (II), $10.52 \AA$. The difference is due primarily to the presence of the Cl^{-}on this axis in (II), halfway between the Li^{+}at the center of each complex. Each Cl^{-}is surrounded by two sets of six equivalent close-packed methyl groups, three methoxymethyl groups above and three below it, and six para methyls projecting in
from adjacent stacks. The fact that the Cl^{-}appears to take up only about $2 \AA$, when its radius is only slightly smaller than this, implies that it 'nestles' among the six equivalent methoxymethyl groups (the distance between the methyl C atoms within one plane is $4.0 \AA$; see Fig. 5). Each Cl^{-}is only $2 \cdot 6 \AA$ from the corners of a trigonal antiprism formed by six equivalent $\mathrm{H} 9 A$ atoms ($\mathrm{H} 9 A$ is one of the three H atoms on C9). This distance is certainly imprecise, but we do believe that there are six short $\mathrm{Cl} \cdots \mathrm{H} 9 A$ contacts. The final position of H9A, given in Table $2(b)$, is close to that found in a difference map, and since the $\mathrm{C}-\mathrm{H}$ distance was constrained to be $1.08 \AA$, the final position should be close to the true position.

The planes of the methoxymethyl C atoms (Fig. 5) are almost the same distance apart within the hosts in (I) and (II), despite the fact that there is a contraction of the intra-cavity $\mathrm{O} \cdots \mathrm{O}$ distances in (II), which might be expected to move these planes closer together. The reason they are not closer in (II) is that the torsion angles about the $\mathrm{C}-\mathrm{O}$ bonds are close to 90° in (II) [as well as in (III)], but only about 62° in

Fig. 3. Stereoview of the packing of (I). The view is nearly down [111], which coincides with the $\overline{3}$ axis of the molecule. Only one molecule in each 'stack' along [111] is shown. Note that each molecule shown lies, in this projection, nearly above or below a corner of the rhombohedral unit cell, which is outlined. The interleaving of molecules in adjacent stacks is apparent.

Fig. 4. Stereoview of the packing of (II), nearly along the [111] direction. The complexes are stacked along [111], just as the pure host molecules of (I) are. $\mathrm{A} \mathrm{Cl}^{-}$ion lies at each corner of the unit cell, which is outlined; an Li^{+}ion is at the center of each cell, which is also the center of the cavity of the host molecule that occupies each cell.
(I). This difference compensates for the effect of contraction of the cavity in (II), the methyls moving further from the plane of their attached O atoms as the torsion angle increases. Distances between the planes of these O and C atoms within the different hosts are compared in Table 3.

The distance between the axes of adjacent stacks is $11.34 \AA$ in the uncomplexed host, but only $10.59 \AA$ in (II). Presumably this contraction in the crystal of the complex is a consequence of the lengthening of the [111] stacking axis, which results primarily from the insertion of the Cl^{-}ions. Since Cl^{-}is much smaller than the host, this lengthening permits more interleaving between the stacks. The contraction in the inter-stack distance is also favored by electrostatic attraction between the ions in the stacks. Each Cl^{-}has six Li^{+}neighbors, and each Li^{+}six Cl^{-} neighbors, in adjacent stacks at just $10.73 \AA$, arrayed with $\overline{3}$ symmetry. The shortest interionic contact along the axis of the stack is just half the length of [111], 5.26 \AA. There are no other intermolecular contacts in crystals of (I) or (II) that seem worthy of comment.

It is of interest that the 4-methyl derivative of HMP forms crystals in $R \overline{3}$ or $R \overline{3} m$, with one molecule in a cell of dimensions $a=11.82 \AA$ and $\alpha=$ $115 \cdot 6^{\circ}$ (Irngartinger et al., 1970). These dimensions are very close to those of (I); the length of [111] in this cell is $7.55 \AA$, which is thus the distance between equivalent molecules in what are doubtless stacks along this direction in the crystal. The structure was not pursued by Irngartinger et al. (1970) because the crystals contained disordered solvent, either bromobenzene or xylene, depending on the medium used for crystallization. The densities they quote correspond to a cell content of about 0.75 to 0.9 molecules of solvent. We suspect that these disordered molecules of solvent pack in the stacks, parallel to and between the molecules of 4 -methyl HMP, which is

Fig. 5. The six methoxyl groups (H atoms not shown) in a single molecule of the host of (I), (II) and (III). Bonds joining the C and O atoms are not shown. The distances d and D between the planes of O and C atoms are given in Table 3 for the different structures; these planes are necessarily parallel in each structure, because the space groups are centrosymmetric.
probably nearly as flat in its center as HMP itself (Fig. 2). The combined thickness of the solvent and the 4-methyl HMP molecule should be around 7.5 to $8 \AA$, in accord with what is observed for the length of [111].

Fig. 6 is a drawing of the structure of (III) without the counterion or the solvent. The equivalent host molecules in this crystal pack at nearly 90° to one another, rather than parallel as in (I) and (II). The interstices left by this mode of packing are filled by the large counterion and the solvent. Efforts were made to grow crystals with monatomic counterions (and without solvent), but they were fruitless.

Fig. 7 shows the packing of (IV), which like (III) has large holes that are filled with solvent. Packing calculations indicate that the density and the intermolecular distances are reasonable when the solvent is modeled with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. When the solvent molecule is rotated around the threefold axis, the variation in energy with rotation is about $5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, with the maxima and minima repeating with the expected threefold symmetry. The minimum in energy is quite broad, varying by only about $2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ over a 70° range. This suggests that the holes are not quite cylindrical, but that the preferred positions are favored only to a relatively small degree.

Fig. 6. Stereoview of the packing of the host, complexed with Na^{+}, in crystals of (III). The counterion and solvent have been omitted. The angle between the normals to the mean planes of host molecules related by the c glide is 86°; in contrast, these normals are parallel in crystals of (I) and (II). In this view, a is to the right, \mathbf{c} approximately vertical.

Fig. 7. Stereoview of the packing of (IV), with disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ represented by a sphere of radius $2 \cdot 3 \AA$.

We are indebted to Drs D. J. Cram, R. C. Helgeson, T. Kaneda and T. Taguchi for samples of the crystals studied, to the staffs of the UCLA Office of Academic Computing and of the departmental VAX computers for facilitating this work, and to the National Science Foundation for grants in support of much of it.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. Sl-S19.
Anderson, G. M. III, Kollman, P. A., Domelsmith, L. N. \& Houk, K. N. (1979). J. Am. Chem. Soc. 101, 2344-2352.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Caillet, J. (1982). Acta Cryst. B38, 1786-1791.
Cram, D. J., Brown, S. B., Taguchi, T., Feigel, M., Maverick, E. \& Trueblood, K. N. (1984). J. Am. Chem. Soc. 106, 695-701.
Cram, D. J., Kaneda, T., Helgeson, R. C., Brown, S. B., Knobler, C. B., Maverick, E. \& Trueblood, K. N. (1985). J. Am. Chem. Soc. 107, 3645-3657.
Cram, D. J., Kaneda, T., Helgeson, R. C. \& Lein, G. M. (1979). J. Am. Chem. Soc. 101, 6752-6754.

Cram, D. J. \& Trueblood, K. N. (1981). Top. Curr. Chem. 98, 43-106.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Di Rienzo, F., Domenicano, A., Portalone, G. \& Vaciago, A. (1976). Proc. Yugosl. Cent. Crystallogr. 11(Suppl.), A102-104.

Dunitz, J. D., Schomaker, V. \& Trueblood, K. N. (1988). J. Phys. Chem. 92, 856-867.
Gavezzotti, A. (1983). J. Am. Chem. Soc. 105, 5220-5225.
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.
Irngartinger, H., Leiserowitz, L. \& Schmidt, G. M. J. (1970). Chem. Ber. 103, 1132-1156.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). multan78. a System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Motherwell, W. D. S. \& Clegg, W. (1978). Pluto78. Program for plotting crystal and molecular structures. Univ. of Cambridge, England.
Nyburg, S. C. \& Faerman, C. H. (1985). Acta Cryst. B41, 274-279.
Rosenfield, R. E., Trueblood, K. N. \& Dunitz, J. D. (1978). Acta Cryst. A34, 828-829.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.
Shefter, E., Singh, S., Brennan, T. \& Sackman, P. (1974). Cryst. Struct. Commun. 3, 209-213.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Trueblood, K. N. (1978). Acta Cryst. A34, 950-954.
Trueblood, K. N. (1984). X-ray Crystallography and Drug Action, edited by A. S. Horn \& C. J. DeRanter, pp. 45-62. Oxford: Clarendon Press.
Trueblood, K. N., Knobler, C. B., Maverick, E., Helgeson, R. C., Brown, S. B. \& Cram, D. J. (1981). J. Am. Chem. Soc. 103, 5594-5596.
Trueblood, K. N. \& Maverick, E. F. (1986). Acta Cryst. C42, 179-181.

UCLA Crystallographic Package (1984). J. D. McCullough Laboratory of X-ray Crystallography, Univ. of California, Los Angeles, USA.

Vögtle, F. \& Neumann, P. (1969). Tetrahedron Lett. pp. 5329 5334.

Vögtle, F. \& Neumann, P. (1970). Tetrahedron, 26, 5847-5873.

Structure and Phase Transition of 1,3-Cyclohexanedione Crystals as a Function of Temperature

By Andrzej Katrusiak
Department of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

(Received 20 June 1990; accepted 3 December 1990)

Abstract

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}, \quad M_{r}=112 \cdot 13$, monoclinic, $\quad P 2_{1} / c, \quad a=$ 6.1549 (6),$\quad b=11.731$ (1), $\quad c=8.194$ (1) $\AA, \quad \beta=$ $99.386(8)^{\circ}, \quad V=583.7(1) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.276 \mathrm{~g} \mathrm{~cm}^{-1}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54178 \AA, \quad \mu(\mathrm{Cu} K \alpha)=$ $7.05 \mathrm{~cm}^{-1}, F(000)=240, T=303 \mathrm{~K}, R=0.084$ for 558 reflections with $I \geq 1.96 \sigma_{1}$. 1,3-Cyclohexanedione (enol form) is known to undergo a strong pressure-induced phase transition involving proton transfer in the hydrogen bond; it also forms inclusion compounds with benzene. In this paper we report the temperature dependence of the 1,3cyclohexanedione structure. The unit-cell dimensions have been measured between 213 and 323 K and the structure has been determined at 213,273 and 303 K . At $T_{c}=287(1) \mathrm{K}$, the crystals undergo a strong structural transformation in which the crystal shape is markedly deformed; the transition is similar to that observed at high pressures. At the transition point the disordered methylene $\mathrm{C}(5) \mathrm{H}_{2}$ becomes ordered, molecules significantly change their positions in the crystal lattice and the enolic proton changes its donor and acceptor sites. This offers a unique opportunity for an analysis of the factors destabilizing the position of the proton forming a hydrogen bond. Despite a large change of the unitcell dimensions $[\mathrm{at} \quad 273 \mathrm{~K} \quad a=5.683$ (1), $\quad b=$ 11.623 (2), $c=8.724$ (2) $\left.\AA, \beta=95.40(2)^{i}\right]$ the crystal preserves its high-temperature space group $P 2_{1} / c$, owing to the disappearance of the non-crystallographic mirror plane along ($10 \overline{2}$) when the crystal is cooled below 287 K .

Introduction

The crystal structure of 1,3-cyclohexanedione (hereinafter referred to as CHD) was reported by Etter, Urbańczyk-Lipkowska, Jahn \& Frye (1986); the

0108-7681/91/030398-07\$03.00
same authors also reported the inclusion compound of CHD with benzene. Most recently the unit-cell dimensions and the structure of the CHD crystals were studied at high hydrostatic pressures by X-ray diffraction (Katrusiak, 1990a). When subjected to pressures of about 100 MPa the CHD crystals undergo a strong structural transformation which significantly changes the arrangement of the molecules and the shape of the crystals, but their space group ($P 2_{1} / c$) remains unchanged. The pressureinduced transformation involves the ordering of the methylene group $\mathrm{C}(5) \mathrm{H}_{2}$ (which is disordered at room temperature and ambient pressure), and a transfer of the enolic proton between the donor and acceptor sites of the hydrogen bond.

In this contribution, we report the temperature dependence of the CHD structure. The crystals undergo a structural transformation at 287 (1) K, similar to that observed at high pressures. Two low-temperature structural determinations of CHD have been performed, at 213 and 273 K , and the low-temperature and the high-pressure structures have been compared. The main aim of this study was to determine the differences between the temperature- and pressure-induced changes in these crystals and to compare the changes in the low- and high-temperature phases. However, we were also interested in the geometry of the hydrogen bond in the low-temperature (high-pressure) phase which, due to the experimental limitations of the highpressure X-ray experiments, could not be obtained under high-pressure conditions. The CHD structure has also been determined at 303 K , to show the temperature dependence of the high-temperature (ambient-pressure) phase. Since the high-pressure and low-temperature structures of CHD are similar, they will both be referred to as CHD2, and the high-temperature (ambient-pressure) phase will be referred to as CHDI.

[^1]: * A cubic crystalline modification of (II), which we denote (II a), was also found, with $a=21.981 \AA$ at $115 \mathrm{~K}, \operatorname{Pn} 3 n, Z=8, V=$ $10620 \AA^{3}, D_{m}=1.051$ (3) $\mathrm{g} \mathrm{cm}^{-3}$ at $296 \mathrm{~K}, D_{\mathrm{x}}=0.955 \mathrm{~g} \mathrm{~cm}^{-3}$ at 115 K for $M_{r}=763.3$ (the formula weight of the complex, excluding any solvent). Small cubic crystals were obtained from methanol-water. Intensity data were collected with $\mathrm{Cu} K \alpha$ radiation at 115 K and although the host was readily found and quite plausibly refined (in a position with $\overline{3}$ symmetry), there was disordered solvent or some other complication present, and when we found the form of (II) reported in the Abstract, we did not study the structure of this cubic form further.

[^2]: * Lists of structure factors and anisotropic displacement parameters, as well as bond distances, bond angles and torsion angles for each structure, and matrices of differences of meansquare displacement amplitudes for pairs of atoms in the different crystals have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53705 (54 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 \dagger For distances see Allen, Kennard, Watson, Brammer, Orpen \& Taylor (1987). For some information about the geometry of and deformations in para-substituted anisoles see Di Rienzo, Domenicano, Portalone \& Vaciago (1976).

[^3]: * Nyburg \& Faerman (1985) discuss the 'polar flattening' of the shapes of bonded halogen and other atoms. They give two contact radii for $\mathrm{F}, 1.55$ and $1.34 \AA$, for contacts in the equatorial and polar directions respectively, but the precision of these values is low. Pauling's original van der Waals radius for F was $1.35 \AA$, but this was criticized by Bondi (1964) as being too low if the atom was assumed spherical. The present cross-cavity contacts are chiefly in the 'polar' direction, so we use $1.35 \AA$.
 \dagger This value, very slightly revised by Shannon (1976) from the $0.74 \AA$ given by Shannon \& Prewitt (1969), is for coordination number 6 and is based on assuming an ionic radius of $1.40 \AA$ for O, which is also the van der Waals radius we use here. Note that twice $(0.74+1.40)$ is 4.28 , which is just the distance between opposite O atoms in (I) (Table 3).

[^4]: * This value was arrived at by taking half of $4.53 \AA$, the distance between opposite O atoms in (III) (Table 3), and subtracting an O radius of $1.40 \AA$. This arbitrary procedure assigns all of the contraction to Na^{+}, which is surely an oversimplification, but then so is the concept of radii itself. The point is that the host is strained in the complex; the O atoms are forced out of coplanarity with the attached ring, and the rings themselves are deformed.

